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A pivotal metabolic function of insulin is the stimulation of
glucose uptake into muscle and adipose tissues. The discovery of
the insulin-responsive glucose transporter type 4 (GLUT4) pro-
tein in 1988 inspired its molecular cloning in the following year.
It also spurred numerous cellular mechanistic studies laying the
foundations for how insulin regulates glucose uptake by muscle
and fat cells. Here, we reflect on the importance of the GLUT4
discovery and chronicle additional key findings made in the past
30 years. That exocytosis of a multispanning membrane protein
regulates cellular glucose transport illuminated a novel adapta-
tion of the secretory pathway, which is to transiently modulate
the protein composition of the cellular plasma membrane.
GLUT4 controls glucose transport into fat and muscle tissues in
response to insulin and also into muscle during exercise. Thus,
investigation of regulated GLUT4 trafficking provides a major
means by which to map the essential signaling components that
transmit the effects of insulin and exercise. Manipulation of the
expression of GLUT4 or GLUT4-regulating molecules in mice
has revealed the impact of glucose uptake on whole-body metab-
olism. Remaining gaps in our understanding of GLUT4 function
and regulation are highlighted here, along with opportunities
for future discoveries and for the development of therapeutic
approaches to manage metabolic disease.

Metabolic diseases like type 2 diabetes and nonalcoholic
hepatosteatosis have been on a steady incline for the past 2
decades, and the economic burden to society is profound. Insu-
lin resistance is a unifying feature of most if not all metabolic
diseases. Hence, it is widely accepted that every effort must be
made to understand the underlying cause of insulin resistance if
we are to slow the progression of these diseases. Given that one
of the most important actions of insulin in the body is to stim-
ulate glucose transport into muscle and adipose tissue, defects
in which contribute to whole-body insulin resistance in
humans, there is much focus on delineating the regulatory fea-
tures of this system. Here, we provide a perspective on key
accomplishments that have been made over the past 30 years

since the insulin responsive glucose transporter was first
discovered.

Unlike most other cells in the body, where glucose transport
is constitutively “on,” in muscle and fat cells, glucose transport
is rapidly up-regulated severalfold in response to insulin, and in
muscle also by exercise. The discovery of GLUT4 30 years ago
was a paramount advance in metabolic research because it pro-
vided a molecular and cell biological explanation for how insu-
lin and exercise regulate glucose transport into muscle and fat
cells. GLUT4 is principally expressed in skeletal and cardiac
muscles as well as in adipocytes, both brown and white, the
same cells that exhibit a profoundly insulin-sensitive glucose
transport system (1–5).

Here, we reflect on the importance of the GLUT4 discovery
and chronicle several key findings made in the past 3 decades,
highlight remaining open questions, and outline possible ways
to capitalize on the knowledge to date for the treatment of met-
abolic disease.

A brief history

GLUT4 cloning, storage, and exocytosis

As early as 1939, Einar Lundsgaard showed that insulin stim-
ulates glucose uptake into rodent muscle. However, our cellular
understanding of this phenomenon was set in motion in 1980,
with the pivotal report that insulin promotes the redistribution
of a glucose transporter from inside the cell to the plasma mem-
brane, giving rise to the translocation hypothesis, first in adi-
pocytes (6 –8) and a few years later in muscle (9, 10). These
pioneering studies used subcellular fractionation and binding
of cytochalasin B (a glucose-sensitive ligand) or glucose uptake
into isolated vesicles to propose that glucose transporters
“translocate” from intracellular membranes to the plasma
membrane of adipocytes and muscle tissue prestimulated with
insulin. At the time in the early 1980s, however, molecular clon-
ing was relatively new, and the concept of gene families had not
been widely considered, and therefore few had contemplated
the possibility that there could be more than one member of the
facilitated glucose transporter family. This concept became
reality shortly after the cloning of the first mammalian glucose
transporter in 1985, now known as GLUT1, one of the land-
mark discoveries in the field. At the time, it was assumed this
was the same transporter that regulated glucose transport in
muscle and fat cells. However, GLUT1 was expressed in all
cells, yet insulin (and exercise) only activated glucose transport
to any great extent in muscle and fat cells. In fact, one of the
controversies at that time was that using antibodies against
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GLUT1, one could observe insulin-dependent movement of an
immunoreactive band from intracellular membranes to the
plasma membrane, but the magnitude of this change was far
less than the observed change in cellular glucose transport. Was
this due to some technical issue of subcellular fractionation,
poor affinity of the antibodies used, or activation of the trans-
porter? This controversy was largely laid to rest when in 1988
James et al. (4) produced a mAb against a glucose transporter
species that had the cell biological properties expected for an
insulin-responsive glucose transporter, another key finding in
the ultimate resolution of insulin-regulated glucose transport.
By immunizing mice with purified intracellular membranes
thought to be enriched in what could have been insulin-respon-
sive glucose transporters, they selected for antibodies that rec-
ognized highly insulin-responsive proteins. Fortuitously, one of
these antibodies was highly selective for a protein later identi-
fied by molecular cloning as the insulin-regulated glucose
transporter, eventually named GLUT4. This inspired five sep-
arate groups to isolate and sequence cDNA clones that encoded
GLUT4 from diverse adipose and muscle systems (1–5).

The molecular cloning of GLUT4 was a crucial step in delin-
eating the mechanism of regulated glucose transport in muscle
and fat cells because it revealed that it was part of a larger highly
homologous facilitated glucose transporter family, comprising
at least five members. Each member was distinguished from the
other by its unique tissue distribution, amino acid sequence,
and kinetic transport properties (for a review, see Ref. 12).

Second, it was crucial because it enabled the production of
isoform-specific antibodies that provided unambiguous exam-
ination of the properties of GLUT4 independently of other iso-
forms. A series of cell biology studies verified the translocation
hypothesis using GLUT4-specific antibodies and photoaffinity
labeling reagents (13–17), followed by immunofluorescence
microscopy (18 –22) or high-resolution EM (23–26). Collec-
tively, these studies showed that in basal adipocytes, GLUT4
was virtually absent from the cell surface and enriched in
70-nm-diameter tubulo-vesicular structures called GLUT4
storage vesicles (GSVs)5, clustered in the vicinity of the trans-
Golgi network (TGN)/perinuclear endocytic recycling com-
partment and distributed in vesicles throughout the cytosol.
With insulin stimulation, a new steady state is reached with
�50% of GLUT4 redistributed from these intracellular struc-
tures to the plasma membrane. These studies provided clear
evidence that insulin indeed stimulates the translocation of the
glucose transporter from intracellular membranes to the cell
surface, and based upon the characteristics and magnitude of
this effect, this mechanism was sufficient to account for the
respective change in glucose transport observed in response to
insulin. General aspects of the GLUT4 itinerary are illustrated
in Fig. 1. Attention next shifted to dissecting the cell biology of
this process.

Dynamics of GLUT4 trafficking

From the early 1990s on, dynamic trafficking studies using
tagged or fluorescent GLUT4 fusion proteins revealed that
what distinguishes GLUT4 from other recycling proteins is its
intrinsic slow exocytic rate in insulin’s absence due to its unique
partitioning into GSVs (28 –34). Importantly, GSVs do not exist
in nonspecialized cells, such as fibroblasts, explaining why
GLUT4 trafficking in such cells is so different from that in bona
fide insulin-sensitive cell types (adipocytes and muscle).
Because of the need to perform spatiotemporal analysis of
GLUT4 localization, most such mechanistic trafficking studies
have been performed in cultured cells, predominantly 3T3-L1
adipocytes, as they possess a robust insulin-responsive GLUT4
system. L6 myotubes have been used as models to investigate
GLUT4 trafficking in muscle cells. For the past 2 decades, stud-
ies in these cultured cell lines relied on tracking transfected,
tagged versions of the transporter, using either static morpho-
logical approaches in fixed cells or more dynamic studies using
live-cell microscopy aided by GFP-tagged versions of GLUT4.

Key aspects of GLUT4 traffic have been realized and are
widely accepted; insulin increases GLUT4 at the plasma mem-
brane principally by mobilizing GLUT4 from GSVs to the
membrane and by accelerating the GLUT4 exocytosis rate.
With insulin, GLUT4 is not statically maintained in the plasma
membrane but continuously recycles. Upon insulin removal,
cell surface GLUT4 rapidly returns to prestimulation levels as
the kinetics of exocytosis and endocytosis reset back to basal
rates. The re-sequestered GLUT4 can be recruited again to the
plasma membrane with a second round of insulin stimulation.
For the most part, these tenets have been verified in mature
adipocytes for the native GLUT4 and, to some degree, by local-
izing endogenous or transfected GLUT4 in muscle fibers. Nota-
bly, through photoaffinity labeling of the endogenous GLUT4
in skeletal muscle, without the need for fractionation, it was
verified that the gain in surface transporters matched the
increase in glucose uptake in response to insulin (35).

The importance of fully understanding the elements and
dynamics governing GLUT4 traffic is brought to light by the
fact that plasma membrane levels of GLUT4 in rodent and
human fat and muscle tissues are elevated in the postprandial
state in vivo (36, 37) when glucose transport into muscle and fat
cells is high, and conversely they are reduced in the fasted state
when glucose transport into those cells is low.

The GLUT4 itinerary and its many unknowns

A major challenge to the full dissection of how GLUT4 nav-
igates throughout the cell is that its normal itinerary includes
transit through both “specialized” and general intracellular
compartments. GLUT4 is internalized from the plasma mem-
brane in great part via clathrin-mediated endocytosis together
with other recycling cargo, such as the transferrin receptor,
albeit the recycling rate of GLUT4 is much slower than that of
other recycling proteins, under both basal and insulin-stimu-
lated conditions (18, 38). GLUT4 diverges from other recycling
cargo and moves from endosomes to a subdomain of the TGN
demarcated by the SNARE proteins Syntaxin6 and Syntaxin16,
and from here it is packaged into GSVs (33, 39 – 41), from which

5 The abbreviations used are: GSV, GLUT4 storage vesicle; TGN, trans-Golgi
network; IRAP, insulin-regulated aminopeptidase; LRP1, low-density lipo-
protein receptor-related protein-1; TIRFM, total internal reflection fluores-
cence microscopy; AMPK, AMP-activated protein kinase; T2D, type 2
diabetes.
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insulin causes its discharge (31). Hence, GLUT4 transits
through endosomal and TGN compartments as it cycles
through the cell, and therefore it is also cargo of those pathways.
Consequently, the membrane transport machineries dedicated
to those pathways, which are not specific to the GSV exocytosis
pathway, are also required for proper GLUT4 traffic. Impor-
tantly, whereas the net amount of GLUT4 in the endosomal and
TGN compartments is quite high in the presence of insulin,
under basal conditions, the majority of GLUT4 is kinetically
sequestered in GSVs with only a small amount of GLUT4 local-
ized to endosomes, TGN, and the plasma membrane at any
given time (42). The continued relay of GLUT4 away from the
constitutive recycling pathway is also responsible for the long
half-life of the protein, and this becomes a hallmark of the exist-
ence of a sequestration mechanism represented by redirection
toward GSVs.

It is not surprising that, because a portion of GLUT4 is found
in endosomes and the TGN even under basal conditions, pro-
teomic analysis of immunopurified GLUT4-containing mem-
branes from adipocytes revealed not just GSV proteins like
GLUT4, the insulin-regulated aminopeptidase (IRAP), and the
low-density lipoprotein receptor-related protein-1 (LRP1), but
also constituents of the generic endosomal and TGN systems,
including all of the Rab GTPases found in these compartments
(Rabs 1– 8, 10, 11, 14, 18, and 35) (43, 44). Corresponding to its
itinerary, the GLUT4 molecule contains a number of amino
acid motifs that choreograph its journey throughout this com-
plex endomembrane system. These include an FQQI motif in
the amino cytoplasmic domain and LL and TELEY motifs in the
carboxyl cytoplasmic domain (18, 23, 45– 48). These motifs
regulate GLUT4 endocytosis and its sorting into GSVs (28, 33,
49 –51). The large intracellular loop has also been implicated in
intracellular sorting (51). The trafficking machinery that inter-
acts with these different motifs is poorly defined, although roles
for the GGA, retromer, and AP1 adaptor complexes have been
proposed (52–55). The core molecular machinery required for
GSV formation remains to be identified. In this regard, a hand-
ful of molecules like sortilin, retromer, and clathrin heavy
chain-22 (56, 57) have been proposed to participate in retro-
grade GLUT4 trafficking and GSV biogenesis. Clathrin heavy
chain-22 is particularly interesting because it is expressed in
humans but not in rodents. Additionally, TUG and TC10 have
been implicated in GLUT4 exocytosis (58, 59). Detailed analysis
of in vivo models is required to fully understand the role of all
these proteins in regulating metabolism. There are a number of
review articles describing the various roles ascribed to these
and additional proteins in fine-tuning GLUT4 traffic, so they
will not be described in detail here (60 –67).

Reflecting on the components established for the GLUT4
traffic model, the next goal should be to analyze GLUT4 traffic
spatiotemporally in mature adipocytes and muscle fibers,
whether by transfecting tagged GLUT4 or detecting the endog-
enous transporter. To some degree, this should become possi-
ble through the use of new antibodies that recognize extracel-
lularly facing GLUT4 epitopes (68) and mini-antibodies. Of
particular interest will be to identify the machinery that accel-
erates the rate constant of GLUT4 exocytosis in addition to the
increase in the GLUT4 available for discharge. Another feature

of GLUT4 trafficking that has confounded the analysis of insu-
lin-regulated GSV exocytosis is that most cells, including
generic fibroblasts, exhibit some kind of regulated traffic
between endosomes and the plasma membrane. For example,
several different growth factors increase surface levels of a
range of nutrient receptors and transporters, such as the trans-
ferrin receptor, amino acid transporters, and other glucose
transporters like GLUT1. What has recently become clear is
that adipocytes and muscle cells also possess this generic regu-
lated recycling system in addition to the more specialized GSV
exocytosis system (69). However, it has proven challenging to
molecularly distinguish these systems from each other. Impor-
tantly, whereas there is a 2-fold increase in the level of generic
recycling proteins at the cell surface with insulin, the increase in
GLUT4 and other GSV proteins like IRAP is �10-fold. This
has given rise to the concept that GSVs are distinct from
endosomes.

In the years 2004 –2012, employing live-cell total internal
reflection fluorescence microscopy (TIRFM) to examine GSVs
approaching the cell surface in response to insulin, it was shown
that these vesicles are not only enriched in Rab10, a GTPase
involved in insulin-dependent GLUT4 exocytosis, see later, but
they move to and fuse with the plasma membrane indepen-
dently of endosomes (70). Several other studies have used
TIRFM to analyze the effect of insulin on docking versus fusion
of GSVs at the plasma membrane (71–75). However, these
studies are limited by the inability to distinguish between GSVs
and GLUT4-positive endosomes. Hence, it may be fruitful to
combine expression of tagged Rabs with high-resolution
TIRFM to compare docking and fusion of GSVs versus endo-
somes in adipocytes in the presence and absence of insulin.

Another question that arises is whether GLUT4 that is dis-
charged into endosomes in the presence of insulin requires
repackaging into GSVs to recycle back to the cell surface, or
would it simply recycle via the generic pathway until insulin is
withdrawn? Analysis of GLUT4 recycling in fibroblasts and adi-
pocytes favors the former (31, 76); however, such observations
are complicated by the aforementioned challenge that to get to
GSVs, GLUT4 and other cargo first must transit through the
endosomal/TGN system.

Relaying the information of insulin signaling to vesicle
traffic

Whereas the studies above provided essential information
about the complexity of GLUT4 trafficking in cells, particularly
adipocytes, they did not address the specific components that
actually orchestrated the redistribution of the transporters to
the cell surface. Fortuitously, the details of the insulin-signaling
pathway were also being defined in parallel, and in the 1990s,
through elegant studies by a number of groups, it was shown
that the insulin receptor was a tyrosine kinase, and upon acti-
vation it phosphorylates insulin receptor substrate proteins like
IRS1 that acted to recruit adaptors to the plasma membrane.
One of these, phosphatidylinositol 3-kinase, led to increased
phosphatidylinositol 3,4,5-trisphosphate at the plasma mem-
brane, leading to the activation of Akt. Using small-molecule
inhibitors of the phosphatidylinositol 3-kinase/Akt pathway, it
was shown that this pathway plays an essential role in insulin-
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regulated glucose transport in both muscle and fat cells. The
discovery in 2003 that a RabGAP, TBC1D4 (also known as
AS160), is a highly insulin-responsive Akt target (77) provided
one of the first links between insulin signaling and GLUT4
translocation, given that a major function of Rab GTPases is to
regulate vesicle traffic. TBC1D4 emerged as a negative regula-
tor in the insulin transduction relay, since overexpressing a
phosphorylation-defective mutant reduced insulin-dependent
GLUT4 translocation and, conversely deletion of TBC1D4 ele-
vated GLUT4 levels in the plasma membrane in the absence of
insulin stimulation. Active research is still uncovering the var-
ious mechanisms for how TBC1D4 exerts its regulation, and
hence we next expand on these to expose current questions
(77).

TBC1D4 possesses four separate functions relevant to
regulated GLUT4 trafficking: 1) GAP activity, 2) Akt substrate
and 14-3-3 binding, 3) lipid binding, and 4) GSV binding

GAP activity—The active site of TBC1D4 displays GAP activ-
ity in vitro against a variety of Rab GTPases, including Rab8,
Rab10, and Rab14, thereby maintaining them inactive, and
functionally, these Rab GTPases along with the closely related
Rab13 play a role in GLUT4 trafficking in adipose and/or mus-
cle cells (78, 79). Rab10 and Rab14 have been identified on puri-
fied GSVs by MS (80), and TIRF microscopy identified Rab10 as
the main Rab protein associated with GSVs arriving at the
plasma membrane of insulin-stimulated adipocytes (70).

Akt substrate and 14-3-3 binding—Initially, six insulin-regu-
lated phosphorylation sites were described for TBC1D4, and
proteomic analysis has identified up to 26, with three proven to
be Akt substrates (77). Akt-dependent phosphorylation cata-
lyzes binding of 14-3-3 to TBC1D4 (81) and the TBC1D4 phos-
phorylation-defective mutant re-engineered to constitutively
bind to 14-3-3 protein can no longer prevent GLUT4 translo-
cation (81). Accordingly, it has been suggested, although not
experimentally proven, that phosphorylation and/or 14-3-3
binding directly inhibits TBC1D4 GAP activity. A recent study
has shown that the TBC1D4 ortholog TBC1D1 that is also phos-
phorylated by Akt and AMPK does not undergo any significant
change in GAP activity following its phosphorylation (82).
However, the stoichiometry of TBC1D1 phosphorylation was
not carefully assessed in this study, so it is unclear what propor-
tion of the total TBC1D1 pool that was under investigation was
actually phosphorylated.

Lipid binding—TBC1D4 possesses an N-terminal phospho-
tyrosine-binding domain that regulates its association with the
plasma membrane (83), suggesting that it may impart regula-
tion at this location.

GSV binding—TBC1D4 binds to GSV cargo, including the
cytosolic tails of IRAP and LRP1, and this interaction is reduced
in response to insulin (43, 84). In fact, phosphorylation of
TBC1D1, determines its dissociation from IRAP rather than its
inactivation (82). Assuming that, as with TBC1D1, phosphory-
lation of TBC1D4 does not regulate its GAP activity, then
phosphorylation-dependent release of TBC1D1/TBC1D4 from
GSVs may be the major mechanism for regulating the activity of
this protein, enabling GTP loading of Rabs on GSVs. However,
it has also been shown that a GLUT4-TBC1D4 fusion protein

translocates to the cell surface in adipocytes in response to
insulin, whereas a fusion protein comprising mutations in the
major Akt phosphorylation sites in TBC1D4 was blocked (84).
These studies tend to exclude a central role for TBC1D4 release
from membranes as a major regulatory mechanism. Thus, fur-
ther work is required to resolve the role of phosphorylation in
the activity of these proteins.

The above observations have led to a model where, in the
absence of insulin, TBC1D4 binds to GSVs and represses
GLUT4 exocytosis by blocking activation (GTP loading) of its
Rab targets. Akt-dependent phosphorylation of TBC1D4
triggers 14-3-3 binding, inhibiting the interaction between
TBC1D4 and GSV components like IRAP, releasing TBC1D4
into the cytosol, and enhancing GTP loading of its Rab GTPases
on GSVs, which in turn must engage effectors to enact mobili-
zation to and/or fusion with the plasma membrane. The N-
terminal lipid-binding phosphotyrosine-binding domain in
TBC1D4 may contribute to GSV docking at the cell surface,
raising the possibility that TBC1D4 phosphorylation by Akt
may also occur after GSVs have docked at the cell surface.
Aligned with this, an in vitro reconstitution assay showed that
most of the insulin regulation required for GSV fusion with the
plasma membrane tracks with the purified plasma membrane
(85), and phosphorylated TBC1D4 was found to be enriched at
the plasma membrane (86). Hence, in this model, TBC1D4 may
actually contribute to docking GSVs at the plasma membrane
prior to their fusion. Based upon the similarities between
TBC1D1 and TBC1D4 function, it is predicted that the same
model applies to exercise-mediated GLUT4 translocation in
muscle via TBC1D1 and other kinases like AMPK.

TBC1D4-regulated Rab GTPases directing GLUT4 vesicle
trafficking

The implication of a RabGAP connecting the Akt pathway to
GLUT4 trafficking brought into full focus the identity of the
Rab GTPase itself that serves as the substrate of TBC1D4. Using
a biochemical approach, Lienhard and colleagues (87) showed
that the TBC domain of TBC1D4 had reasonable GAP activity
toward a subset of the 60 Rabs expressed in mammals, namely
Rabs 2A, 8A, 10, and 14. It is notable that in this assay, the GAP
activity of the TBC1D4 fragment used was relatively low com-
pared with that observed for other GAPs. In a recent study
examining TBC1D1 expressed in Sf9 cells, it was shown that the
GAP activity of the full-length protein was markedly higher
than that of the GAP domain alone (82). Hence, it would be
fruitful to re-examine the Rab GTPase specificity of TBC1D4
using the full-length protein. Rab10 is the only known TBC1D4
substrate in adipocytes that is clearly functionally linked to
GLUT4 translocation to the plasma membrane for the follow-
ing reasons: 1) Rab10 knockdown blunts insulin-stimulated
GLUT4 translocation to the plasma membrane, similar in phe-
notype to overexpression of the TBC1D4 dominant inhibitory
mutant; 2) Rab10 knockdown reverses the effects of TBC1D4
knockdown in adipocytes, providing strong evidence that
Rab10 is downstream of TBC1D4 (79); 3) adipose-specific
Rab10 knockout blunts insulin-stimulated glucose uptake into
adipose tissue in vivo and in vitro and blunts GLUT4 insulin-
stimulated GLUT4 translocation in in vitro differentiated adi-
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pocytes from Rab10 knockout mice (88); and 4) adipose-spe-
cific Rab10 knockout is accompanied by dysregulation of
whole-body glucose homeostasis similar to adipose-specific
GLUT4 knockout (88). Rab14 has also been implicated to some
degree in GLUT4 trafficking in adipocytes (89, 90). Conversely,
in L6 myocytes, Rab8a and Rab13 act downstream of TBC1D4
and have dominating effects on GLUT4 translocation (91, 92).

The above work on TBC1D4 and the identification of the Rab
substrates has pinpointed three major putative sites of action of
insulin required to implement increased GLUT4 at the cell sur-
face: release of GSVs from their intracellular retention, move-
ment of GSVs to the plasma membrane, and docking and fusion
of GSVs with the plasma membrane. The current controversy
around which of these steps is regulated by TBC1D4/Rab10
represents a challenge to our full understanding of this process.
One view proposes that the main regulated step is the docking/
fusion with the plasma membrane (93), possibly through myo-
sin Va (70), thereby raising the possibility that additional Akt
substrates are required to execute insulin-dependent GSV traf-
fic to this site. On the other hand, the identification of Sec16A
as a major effector of Rab10 in adipocytes supports its input at
the level of GSV formation (94). In myoblasts, myosin Va is a
Rab8a effector regulating GLUT4 at perinuclear regions (91),
and it is the Rab13 effectors MICAL-L2 and actinin-4 that act at
the cell periphery (92). Future studies are required to come to
consensus as to the precise GLUT4-trafficking steps that are
regulated by these effectors and to establish whether they are
cell type–specific.

Beyond TBC1D4 and its Rab GTPases

Although highly relevant, only about half of the effect of insu-
lin-stimulated GLUT4 translocation can be accounted for by
the TBC1D4-Rab10 signaling module in adipocytes (79, 88),
establishing that additional Akt targets are required for insulin
control of GLUT4. The small GTPase RalA, acting via the exo-
cyst, contributes to GLUT4 translocation, and recent evidence
supports its activation downstream of Rab10. Whether this
accounts for the remaining insulin effect on GLUT4 not
explained by TBC1D4 remains to be determined. In addition,
especially in muscle, other signals downstream of phosphatidyl-
inositol 3-kinase, such as activation of Rho-family GTPases, in
particular Rac1, exert regulatory inputs in parallel to the Akt
axis (95). A major outcome of Rac1 activation by insulin is the
reorganization of actin filaments beneath the membrane,
required for GLUT4 translocation (96). Cortical actin filaments
interact with the molecular motor Myo1c that aids in GSV teth-
ering beneath the membrane (97, 98) and contribute to GLUT4
vesicle positioning for subsequent fusion (99). The next years
should focus on elucidating these collective mechanisms and
how they exert the overall displacement of GSVs and their posi-
tioning for optimal fusion with the plasma membrane.

Contrasting with the wealth of knowledge gained to date on
the mechanism and regulation of GLUT4 intracellular traffic,
the catalytic activity of the transporter remains far less ex-
plored, although it has been considered in studies over the 30
years since GLUT4 cloning (100 –105). Given that the activity
of most other nutrient transporters is subject to regulation, a
compelling future goal will be to solve the structure of GLUT4

and to gain understanding of how metabolic and hormonal sig-
nals potentially control glucose transport activity via alterations
in GLUT4 architecture.

Regulation of GLUT4 by exercise

The discovery of GLUT4 also contributed significantly to our
understanding of the metabolic actions of exercise. A substan-
tial increase in muscle glucose uptake is pivotal to sustain the
energetic cost of muscle activity. A rise in glucose uptake into
muscle during exercise was formally documented by Holloszy
and Narahara in 1965 (106). When GLUT4 was cloned and its
abundance in skeletal muscle was determined, it became press-
ing to determine its participation in the exercise response. This
was evinced by the reduction in glucose uptake into contracting
muscles of GLUT4-null mice (107, 108). Before that, however,
studies in the 1990s using subcellular fractionation showed that
exercise and muscle contraction promote a gain in GLUT4 at
both the sarcolemma and transverse tubule membranes (13,
109, 110). Importantly, the gain in surface GLUT4 upon simul-
taneous muscle contraction and insulin stimulation was addi-
tive (111). These findings were nicely reinforced using immu-
nofluorescence and immunoelectron microscopy, whereby
contraction appeared to deplete GLUT4 from transferrin
receptor–positive endosomes that were not affected by insulin
(24, 112), visually supporting the concept that the intracellular
depots mobilized by exercise differ from those accessed by
insulin (13, 24). However, like insulin, exercise also reduces
GLUT4 in the TGN area, in the subsarcolemmal cytoplasm,
and along the sarcomeric bands, consistent with the concept
that there is overall mobilization of the continuum of GLUT4-
containing compartments. This suggests that, as in adipocytes,
the diverse GLUT4 pools are in constant communication with
each other.

Tracing the signals that promote increased surface GLUT4
in contracting muscle has proven challenging, due in part to the
lack of suitable cell culture models that faithfully reproduce
muscle contraction and the limitations of performing live anal-
ysis in a contracting muscle. The signals involved include an
increase in cytosolic Ca2�, activation of the enzyme AMPK
(although this has been contested in some studies (113)), and
several other and possibly additive pathways (24 –27) that may
converge downstream to mobilize GLUT4 and thus regulate
glucose uptake. Indeed, beyond promoting GLUT4 increases in
the plasma membrane, a single bout of exercise can also sensi-
tize the muscle to insulin, causing a left shift in the glucose
uptake response to insulin (114). How GLUT4 traffic is sensi-
tized under these conditions is still being investigated.

Notably, both TBC1D4 and particularly TBC1D1 are phos-
phorylated in response to muscle contraction/exercise, illus-
trating that, although different vesicular pools and signals are
engaged by contraction and insulin, there is convergence in
some downstream signals. Whereas TBC1D4 regulates aspects
of GLUT4 exocytosis in response to insulin, the steps that
either TBC1D1 or TBC1D4 regulate during exercise remain to
be mapped, and their relative contributions remain to be dis-
cerned (115). Depletion of these RabGAPs is associated with
reduced GLUT4 protein levels, raising the possibility that
under these conditions, the transporter is mis-sorted and
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rerouted to the degradative pathway (11). If so, these RabGAPs
are not only involved in GSV translocation to the plasma mem-
brane in response to stimuli but may also play a crucial role in
GLUT4 sequestration in GSVs, protecting it from degradation
(116, 117).

Importantly, insulin resistance does not affect the acute exer-
cise-mediated increase in glucose uptake or its underlying ele-
vation in muscle surface GLUT4. This, along with the near
additivity in the GLUT4 response caused by insulin plus exer-
cise, supports the concept that the two stimuli access distinct
intracellular pools of the transporter. It is tempting to consider
that the distinct pools of GSVs might be demarcated by
TBC1D4 or TBC1D1 regulation, respectively. The available and
future evidence supporting the difference in pools and signals
will present the opportunity to bypass insulin resistance of
GLUT4 translocation by promoting GLUT4 traffic through the
exercise/contraction pathway. Further work is required to
achieve a full definition of the mechanistic similarities and
differences in GLUT4 regulation by insulin and muscle
contraction.

GLUT4 in human metabolic disease

A hallmark clinical feature of insulin-resistant individuals
and those suffering from type 2 diabetes (T2D) is reduced clear-
ance of glucose from the blood, and this is mainly due to
impaired insulin-stimulated glucose transport into muscle and
adipocytes. Compelling evidence using 31P NMR measure-
ments shows that glucose transport into muscle is rate-limiting
for insulin-stimulated glycogen synthesis and nonoxidative glu-
cose metabolism in individuals with T2D (118). Earlier studies
had shown reduced uptake of the nonmetabolizable sugar 3-O-
methylglucose into perfused or isolated muscles of diabetic rats
that notably could be improved, although not restored, by mus-
cle contraction (119, 120). These collective studies suggested
that defective GLUT4 translocation to the cell surface is a major
lesion contributing to insulin resistance in muscle and possibly
adipocytes, and evidence to this effect soon emerged.

The total level of GLUT4 is reduced by 50% in adipose tissue
from humans with T2D but unchanged in skeletal muscle (121).
Is the glucose transport defect in adipose tissue purely a func-
tion of reduced GLUT4 levels? This is likely not the case, at least
in gestational diabetes, because not all individuals display
reduced GLUT4 levels in their fat cells, yet all present a similar
reduction in insulin-stimulated glucose transport (122). Direct
investigation of this question had started already in the late
1980s, when a defect in insulin-dependent GLUT4 transloca-
tion to the muscle plasma membrane was documented in
rodent models with diverse origins of insulin resistance (123–
126). In the late 1990s, impaired insulin-dependent redistribu-
tion of GLUT4 was shown in muscle from humans with T2D
(127–129). Subcellular fractionation studies also showed a
defect in insulin-dependent GLUT4 translocation in gesta-
tional diabetes, whereas insulin-regulated movement of the
constitutively recycling GLUT1 transporter was unaffected.

Several of the studies mentioned above also revealed aber-
rant intracellular distribution of GLUT4 already in basal con-
ditions, raising the possibility that the defect may lie in the
intracellular sorting of the transporter (125, 127). Notably, the

defect in muscle GLUT4 traffic in T2D is relatively specific to
insulin action because exercise-modulated GLUT4 transloca-
tion to the cell surface is unaffected (109). This is consistent
with the observations that insulin and exercise draw on GLUT4
from distinct intracellular compartments. Hence, one of the
beneficial effects of exercise in relieving metabolic disease may
lie in the differential action of exercise and insulin on GLUT4
traffic. Thus, it is tempting to speculate that insulin resistance
involves defective trafficking of GLUT4 selectively into insulin-
responsive GSVs. Moreover, the defect is restricted to insulin
regulation of GLUT4/glucose uptake, consistent with observa-
tions in model adipocyte systems and fat tissue from mice with
diet-induced obesity that insulin resistance is selective and spe-
cific to GLUT4 traffic relative to other metabolic outcomes
(130, 131).

The fact that insulin resistance is relatively specific to
GLUT4 trafficking in muscle and fat cells is inconsistent with
the disease phenotype arising from a generic defect in one of the
signaling components proximal to the insulin receptor, as this
would result in defects in all of the hormone’s actions (132,
133). Whereas numerous studies report a reduction in Akt
phosphorylation in fat and muscle tissue of diabetic and obese
prediabetic animals and humans, cellular studies show that, as a
single defect, Akt must be reduced by over 80% or specifically at
the plasma membrane to significantly impact on GLUT4 trans-
location (reviewed in 67, 134). In fact, in muscle from humans
with insulin resistance and/or T2D, despite a 40 –50% defect in
insulin-stimulated Akt phosphorylation at its two major regu-
latory sites (Thr-308 and Ser-473), there is little disruption of
insulin-dependent phosphorylation of a range of Akt substrates
(135). Thus, it is unlikely that defects in proximal insulin signal-
ing are major contributors to insulin resistance in human mus-
cle and adipose tissue. On the other hand, mutations in the Akt
substrate TBC1D4 have been associated with insulin resistance
and diabetes in Greenlandic Inuit people (134). Despite the fact
that this mutation is not common to other ethnic groups, it
highlights that lesions that are specific to the GLUT4 regulatory
arm of insulin action are associated with metabolic disease in
humans.

A more refined description of the nature of the defect(s) in
GLUT4 traffic in both muscle and adipose tissue awaits, espe-
cially defining whether the defect(s) involves impaired sorting
of GLUT4 into GSVs or defective GSV mobilization and/or
fusion with the cell surface. Resolving this could benefit from
new advances in serial block-face scanning EM combined with
automated three-dimensional reconstruction and quantifica-
tion, as well as from detection with high-affinity, conformation-
specific antibodies that recognize exofacial domains of the
transporter (68). The information gained could provide essen-
tial clues toward understanding the molecular underpinnings
of insulin resistance.

The analysis of the role of GLUT4 in metabolism and disease
would be incomplete without pointing out its localization in
discrete loci outside of muscle and adipose tissues, specifically
within areas of the brain (136 –138), cerebellum (139), and kid-
ney (140, 141). Undoubtedly, the future will disclose more
about the function of the transporter in these areas and its

JBC REVIEWS: GLUT4 perspective at 30

11374 J. Biol. Chem. (2019) 294(30) 11369 –11381



impact on whole-body metabolism as well as its potential fail-
ure leading to disease.

GLUT4 or GLUT4 pathway as a therapeutic target?

In addition to providing considerable insight into vesicle
transport and the insulin-signaling pathway, the discovery of
GLUT4 has advanced our understanding of whole-body metab-
olism and in particular of tissue cross-talk. Most notably, as
shown in 2005, deletion of GLUT4 specifically in adipocytes
leads to major metabolic defects throughout the body, includ-
ing in liver and muscle (142). This supports the concept that
defects in insulin regulation of GLUT4 trafficking could con-
tribute to whole-body insulin resistance in humans. The impact
of tissue-specific deletion of GLUT4 on metabolic defects in
other tissues has given rise to the notion that glucose metabo-
lism in one tissue regulates the release of circulating factors that
influence metabolism elsewhere. Several such factors like the
secretory hormone RBP4 (143) or a novel class of adipocyte
lipids (branched fatty acid esters of hydroxy fatty acids) have
been identified (144), and substantiation of their participation
is being vigorously pursued (145). Alternatively, this tissue
cross-talk may reflect the metabolic switching first proposed by
Randle and colleagues in 1963 (146), describing a reciprocity in
the use of either fatty acids or glucose by muscle and fat cells.
Whether this is mediated by allosteric control, as originally
proposed (i.e. glucose uptake responding to a “pull” signal),
or by fatty acids directly blocking insulin-mediated GLUT4
translocation (a “push” mechanism) (147–149) requires fur-
ther investigation.

Attempts to positively manipulate glucose uptake have also
been made by overexpressing GLUT4 in various tissues of
transgenic mice. Whereas these studies have in general yielded
very positive outcomes on glucose metabolism (150), they have
also shown how important it is to maintain GLUT4 expression
within its physiological range. Indeed, supraphysiological
expression of GLUT4 caused hypoglycemia, hypoinsulinemia,
and lactacidemia. Other strategies, more directly focused on
the process that is actually defective in insulin resistance or on
the pathways utilized during exercise to evoke GLUT4 translo-
cation, are likely to be more effective.

Despite the caveats with the GLUT4 overexpression stud-
ies, they have provided important clues of future clinical
utility. First, as observed in GLUT4-overexpressing mice,
improving insulin-mediated GLUT4 translocation in muscle
will likely lower blood glucose levels and consequently insu-
lin as well, both outcomes being metabolically desirable in
insulin-resistant states. Such an approach might be more
efficacious than alternate strategies, such as insulin admin-
istration, which has other undesirable consequences. Sec-
ond, increasing GLUT4 levels may alleviate lipotoxicity par-
ticularly in liver, a common feature of metabolic disease, by
enhancing the capacity of fat cells to store lipid. Importantly,
as shown a decade after GLUT4 cloning from muscle, a boost
in its expression is a physiological consequence of exercise
training (151, 152), demonstrating that there are physiolog-
ical pathways that could be accessed to improve glucose
redirection to this tissue.

Figure 1. General aspects of GLUT4 cycling that emerged over the years and have served as a template to understand the dynamic regulation
of the transporter itinerary within adipose (left) and muscle (right) cells. TfR, transferrin receptor (recycling endosome marker); GSV, GLUT4 storage
vesicles.
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The future

Notwithstanding the intensive efforts to understand GLUT4
biology over the past 30 years, briefly reviewed here and high-
lighted in Figs. 1 and 2, a number of gaps in our understanding
of transporter function and regulation remain. These include
the regulation of GLUT4 transport activity in addition to regu-
lation of its translocation to the cell surface; the molecular dif-
ferences in the GLUT4 pools and traffic pathways regulated by
insulin and exercise; the signals beyond the RabGAPs that con-
tribute to GLUT4 mobilization and how these are integrated;
the Rab effectors and how these directly enact vesicle budding,
mobilization, and fusion; whether GLUT4 vesicle fusion is part
of the regulated process; the identification of other GLUT4-
regulatory Akt substrates; and ultimately which of these com-
ponents are altered in the most common forms of human insu-
lin resistance.

Beyond mechanistic enquiry, the next 30 years will certainly
build on the knowledge gained in the past 30 to investigate how
GLUT4 and the GLUT4 pathway can be sourced to treat met-
abolic disease. It will be paramount to elucidate in molecular
detail how the regulation of GLUT4 is altered in insulin-resist-
ant states, whether it is a cause or a consequence, and impor-
tantly whether it is a sole or major cause of this condition. As
alluded to here, this defect probably does not involve alterations
in individual, proximal insulin signaling components such
as Akt. However, the nature of the actual defect remains
unknown, and identifying it will have a profound impact on our
understanding of insulin resistance. On the shoulders of the

past 30 years of knowledge, and with rapid developments in a
range of technologies, we can expect considerable progress in
these and related areas to bring closer the advent of novel
classes of insulin sensitizing agents suitable to treat metabolic
disease (Fig. 2).
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